LV5069JA

Bi-CMOS IC
Low power consumption and high efficiency

ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com

Step-down Switching Regulator Controller

Overview

LV5069JA is Step-down switching regulator controller. The recommended operating range is $4.5 \mathrm{~V}-23 \mathrm{~V}$. The operating current is about $68 \mu \mathrm{~A}$, and low power consumption is achieved.

Features and Functions

- Typical value of light load mode current is $68 \mu \mathrm{~A}$
- 4.5 V to 23 V Operating input voltage range
- The oscillatory frequency can be set by the external pin. The oscillatory frequency is $300 \mathrm{kHz}-1 \mathrm{MHz}$.
- Output voltage adjustable to 1.26 V
- Built-in OCP circuit with P-by-P method
- When P-by-P is generated continuously, It shifts to the HICCUP operation
- If connect C-HICCUP to GND pin, Then latch-off when over current
- External capacitor Soft-Start
- Under voltage lock-out, Thermal shutdown and power good indication

Applications

- DVD/Blu-rayTM Drivers and HDD
- LCD Monitors and TVs
- Point of Load DC/DC Converters
- Office Supplies

Typical Application

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	$\mathrm{V}_{\text {IN }}$ max		25	V
Allowable pin voltage	PDR		$\mathrm{V}_{\text {IN }}$	V
	$\mathrm{V}_{\text {IN }}$-PDR		6	V
	HDRV		$\mathrm{V}_{\text {IN }}$	V
	RSNS		$\mathrm{V}_{\text {IN }}$	V
	ILIM		$\mathrm{V}_{\text {IN }}$	V
	EN		$\mathrm{V}_{\text {IN }}$	V
	PG		$\mathrm{V}_{\text {IN }}$	V
	REF		6	V
	RT		REF	V
	SS		REF	V
	FB		REF	V
	COMP		REF	V
	C-HICCUP		REF	V
Allowable power dissipation	Pd max	Specified substrate *1	0.74	W
Operating temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

*1 Specified substrate : $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, fiberglass epoxy printed circuit board
Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating
Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommendation Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage range	V_{IN}		4.5 to 23	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
[Reference voltage]						
Internal reference voltage	$V_{\text {REF }}$		1.247	1.260	1.273	V
Pch drive voltage	$\mathrm{V}_{\text {PDR }}$	IOUT $=0$ to -5 mA	$\mathrm{V}_{\mathrm{IN}}-5.5$	$\mathrm{V}_{\mathrm{IN}}-5.0$	$\mathrm{V}_{1 \mathrm{~N}}{ }^{-4.5}$	V
[Saw wave oscillator]						
Oscillatory frequency	Fosc	$\mathrm{RT}=470 \mathrm{k} \Omega$	280	330	380	kHz
[ON/OFF circuit]						
IC startup voltage (EN PIN)	$\mathrm{V}_{\text {CNT_O }}$		2.0		V_{IN}	V
Disable voltage (EN PIN)	$\mathrm{V}_{\text {CNT_OFF }}$				0.3	V
[Soft start circuit]						
Soft start source current	ISS_SC	$\mathrm{EN}>2 \mathrm{~V}$	1.3	2.0	2.7	$\mu \mathrm{A}$
Soft start sink current	ISS_SK	$\mathrm{EN}<0.3 \mathrm{~V}, \mathrm{SS}=0.4 \mathrm{~V}$	2	3	4	mA
[UVLO circuit]						
UVLO release voltage	VUVLON	$\mathrm{FB}=\mathrm{COMP}$	3.3	3.7	4.1	V
UVLO lock voltage	VUVLOF	FB = COMP	3.02	3.42	3.82	V
[Error amplifier]						
Input bias current	${ }^{\text {EA_IN }}$		-100	-50	100	nA
Error amplifier gain	G_{EA}		100	250	400	$\mu \mathrm{A} / \mathrm{V}$
Output sink current	IEA_OSK	$\mathrm{FB}=1.75 \mathrm{~V}$	-40	-20	-10	$\mu \mathrm{A}$
Output source current	IEA_OSC	$\mathrm{FB}=0.75 \mathrm{~V}$	10	20	40	$\mu \mathrm{A}$

LV5069JA
Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
[Over current limit circuit]						
Reference current	${ }^{\text {ILIM }}$		48.4	55	61.6	$\mu \mathrm{A}$
Over current detection comparator offset voltage	VLIM_OFS		-5		5	mV
RSNS pin input range	$\mathrm{V}_{\text {RSNS }}$		$\mathrm{V}_{\text {IN }}-0.23$		V_{IN}	V
HICCUP timer start-up cycle	$\mathrm{N}_{\mathrm{CYC}}$			15		cycle
HICCUP comparator threshold voltage	$\mathrm{V}_{\text {thic }}$		1.23	1.29	1.35	V
HICCUP timer charge current	${ }^{\text {I HIC }}$		1	2	3	$\mu \mathrm{A}$
[PWM Comparator]						
Maximum on-duty	$\mathrm{D}_{\text {MAX }}$	$\mathrm{RT}=470 \mathrm{k} \Omega$	94			\%
[Logic output]						
Power good "L" sink current	IPWRGD_L	PG $=5 \mathrm{~V}$	4	5	6	mA
Power good "H" leakage current	IPWRGD_H	PG $=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Power good threshold voltage	$\mathrm{V}_{\text {TPG }}$		1.0	1.1	1.2	V
Power good hysteresis	VPG_H		40	50	60	mV
[Output]						
High side output on resistance	RONH			5		Ω
Low side output on resistance	RONL			9		Ω
High side output on current	IONH		300			mA
Low side output on current	IONL		150			mA
[The entire device]						
Standby current	${ }^{\text {I CCS }}$	EN < 0.3V			1	$\mu \mathrm{A}$
Light load mode consumption current	ISLEEP	$E N>2 V$ No switching	48	68	88	$\mu \mathrm{A}$
Thermal shutdown	TSD	*Design guarantee		170		${ }^{\circ} \mathrm{C}$

*Design guarantee: Signifies target value in design. These parameters are not tested in an independent IC.

Package Dimensions

unit : mm (typ)

3178B

Mounting pad sketch

Pd max - Ta

(Unit: mm)

Reference symbol	SSOP16(225mil)
eE	5.80
e	0.65
b3	0.32
I1	1.00

Caution: The mounting pad sketch is a reference value, which is not a guaranteed value.

Evaluation Board Pattern diagram

Pin Assignment

	TOP VIEW	
PG 1	LV5069JA	16 REF
EN 2		15 FB
ILIM 3		14 COMP
$\mathrm{V}_{\text {IN }} 4$		13 N.C.
RSNS 5		12 SS
HDRV 6		$11 \mathrm{C-HICCUP}$
PDR 7		10 RT
GND 8		9 N.C.

Pin Function Description

Pin No	Pin Name	
1	PG	Power good pin. Connect to open drain of MOS-FET in ICs inside. Setting output voltage to "L", when FB voltage is 1.05 V or less.
2	EN	ON/OFF Pin.
3	LIM	For current detection. Sink current is about 55 $\mu \mathrm{A}$. . The current limiter comparator works when an external resistor is connected between this pin and VIN, and if the voltage of this resistor is less than the voltage of RSNS then Pch MOS is turned off. This operation is reset each PWM pulse.
5	RSNS	Supply voltage pin. It is observed by the UVLO function. When its voltage becomes 3.7V or more, ICs startup in soft start.
6	HDRV	Current detection resistor connection pin. Resistor is connected between VIN and this pin, and the current flow to MOSFET is measured.
7	PDR	The external high-side MOSFET gate drive pin.
8	GND	Pch MOSFET gate drive voltage. The bypass capacitor is necessarily connected between this pin and VIN.
9	NC	Ground Pin. Ground pin voltage is reference voltage

Block Diagram

Pin Equivalent Circuit

Pin No.	Pin name	Equivalent circuit
1	PG	
2	EN	
3	${ }^{\text {LIIM }}$	
4	$\mathrm{V}_{\text {IN }}$	
5	RSNS	
6	HDRV	

Continued on next page.

Continued from preceding page.
Pin No.

Continued on next page.

Continued from preceding page.
Pin No.

Detailed Description

Power-save Feature

This IC has Power-saving feature to enhance efficiency when the load is light.
By shutting down unnecessary circuits, operating current of the IC is minimized and high efficiency is realized.

Output Voltage Setting

Output voltage (VOUT) is configurable by the resistance R4 between VOUT and FB and the R5 between FB and GND. VOUT is given by the following equation (1).

$$
\begin{equation*}
\mathrm{V}_{\text {OUT }}=\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 5}\right) \times \mathrm{V}_{\mathrm{REF}}=\left(1+\frac{\mathrm{R} 4}{\mathrm{R} 5}\right) \times 1.26[\mathrm{~V}] \tag{1}
\end{equation*}
$$

Switching Frequency Setting

The switching frequency (FOSC) is set by resistance R7 between RT and GND.
The relation of resistance R 7 to switching frequency is shown in a right graph.

Soft Start

Soft start time (T_{SS}) is configurable by the capacitor C7 between SS and GND.
The setting value of T_{SS} is given by the equation (2).

$$
\begin{equation*}
\mathrm{T}_{\mathrm{SS}}=\mathrm{C} 7 \times \frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{ISS}}=\mathrm{C} 7 \times \frac{1.26}{2.0 \times 10^{-6}} \quad[\mathrm{~ms}] \tag{2}
\end{equation*}
$$

Power Good

FB constantly monitors VOUT. When FB voltage is lower than 1.05 V , PG is pulled down to Low. PG comparator has hysteresis of 50 mV . Because PG is open-drain output, you can connect other ICs with PG to realize wired-or with other ICs.

Hiccup Over-Current Protection

Over current limit (ICL) is set by current sensing resister R1 and resistance (R2) between VIN and ILIM.
The setting value of I_{CL} is given by the equations (3) and (4).

$$
\begin{align*}
& \mathrm{V}_{\mathrm{LIM}}=\mathrm{R} 2 \times \mathrm{I}_{\mathrm{LIM}}=\mathrm{R} 2 \times 55 \times 10^{-6}[\mathrm{~V}] \tag{3}\\
& \mathrm{I}_{\mathrm{CL}}=\frac{\mathrm{V}_{\mathrm{LIM}}}{\mathrm{R} 1}=\frac{\mathrm{R} 2 \times 55 \times 10^{-6}}{\mathrm{R} 1}[\mathrm{~A}] \tag{4}
\end{align*}
$$

When the voltage between $\mathrm{V}_{\text {IN }}$ and RSNS ($\mathrm{V}_{\text {RSNS }}$) is higher than the voltage between $\mathrm{V}_{\text {IN }}$ and $\mathrm{I}_{\text {LIM }}$ for 15 consecutive times, the protection deems it as over current and stops the IC.
Stop period ($\mathrm{T}_{\mathrm{HIC}}$) is defined by the external capacitor (C8) of the C-HICCUP.
The setting value of $\mathrm{T}_{\mathrm{HIC}}$ is given by the equations (5).

$$
\begin{equation*}
\mathrm{T}_{\mathrm{HIC}}=\frac{\mathrm{C} 8 \times \mathrm{V}_{\mathrm{tHIC}}}{\mathrm{I}_{\mathrm{HIC}}}=\frac{\mathrm{C} 8 \times 1.29}{2.0 \times 10^{-6}} \tag{5}
\end{equation*}
$$

When C-HICCUP is about 1.29 V , the IC starts up. Regardless of a status; whether it starts up or SS charge, once over current is detected, the IC stops again and when the protection does not detect over current status, the IC starts up again.

Design Procedure

Inductor Selection

When conditions for input voltage, output voltage and ripple current are defined, the following equations (6) give inductance value.

- Inductor current: Peak value (IRP)

Current peak value ($I_{R P}$) of the inductor is given by the equation (7).

$$
\begin{equation*}
\mathrm{IRP}_{\mathrm{RP}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}}{2 \mathrm{~L}} \times \mathrm{T}_{\mathrm{ON}} \tag{7}
\end{equation*}
$$

Make sure that rating current value of the inductor is higher than a peak value of ripple current.

- Inductor current: ripple current ($\Delta \mathrm{I}_{\mathrm{R}}$)

Ripple current ($\Delta \mathrm{I}_{\mathrm{R}}$) is given by the equation (8).

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~L}} \times \mathrm{T}_{\mathrm{ON}} \tag{8}
\end{equation*}
$$

When load current (IOUT) is less than $1 / 2$ of the ripple current, inductor current flows discontinuously.

Output Capacitor Selection

Make sure to use a capacitor with low impedance for switching power supply because of large ripple current flows through output capacitor.
This IC is a switching regulator which adopts current mode control method. Therefore, you can use capacitor such as ceramic capacitor and OS capacitor in which equivalent series resistance (ESR) is exceedingly small.
Effective value is given by the equation (9) because the ripple current (AC) that flows through output capacitor is saw tooth wave.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}_{-}} \mathrm{OUT}=\frac{1}{2 \sqrt{3}} \times \frac{\mathrm{V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)}{\mathrm{L} \times \mathrm{F}_{\mathrm{OSC}} \times \mathrm{V}_{\mathrm{IN}}} \quad[\mathrm{Arms}] \tag{9}
\end{equation*}
$$

Input Capacitor Selection

Ripple current flows through input capacitor which is higher than that of the output capacitors.
Therefore, caution is also required for allowable ripple current value.
The effective value of the ripple current flows through input capacitor is given by the equation (10).

$$
\begin{align*}
& \mathrm{I}_{\mathrm{C}_{-} \mathrm{IN}}=\sqrt{\mathrm{D}(1-\mathrm{D})} \times \mathrm{IOUT}_{\text {OUrms }} \tag{10}\\
& \mathrm{D}=\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}
\end{align*}
$$

In (10), D signifies the ratio between ON/OFF period. When the value is 0.5 , the ripple current is at a maximum. Make sure that the input capacitor does not exceed the allowable ripple current value given by equation (10).
In the board wiring from input capacitor, $V_{\text {IN }}$ to GND, make sure that wiring is wide enough to keep impedance low because of the current fluctuation. Make sure to connect input capacitor near output capacitor to lower voltage bound due to regeneration current. When change of load current is excessive (IOUT: high \Rightarrow low), the power of output electric capacitor is regenerated to input capacitor. If input capacitor is small, input voltage increases. Therefore, you need to implement a large input capacitor. Regeneration power changes according to the change of output voltage, inductance of a coil and load current.

LV5069JA

Selection of external phase compensation component

This IC adopts current mode control which allows use of ceramic capacitor with low ESR and solid polymer capacitor such as OS capacitor for output capacitor with simple phase compensation. Therefore, you can design long-life and high quality step-down power supply circuit easily.

Frequency Characteristics

The frequency characteristic of this IC is constituted with the following transfer functions.
(1) Output resistance breeder
: H_{R}
(2) Voltage gain of error amplifier
: GVEA
Current gain
: GMEA
(3) Impedance of phase compensation external element
: Z_{C}
(4) Current sense loop gain
: $G_{C S}$
(5) Output smoothing impedance
$: Z_{O}$

Closed loop gain is obtained with the following formula (11).

$$
\begin{align*}
& \mathrm{G}=\mathrm{HR}_{\mathrm{R}} \cdot \mathrm{G}_{\mathrm{MER}} \cdot \mathrm{Z}_{\mathrm{C}} \cdot \mathrm{G}_{\mathrm{CS}} \cdot \mathrm{Z}_{\mathrm{O}} \\
& =\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{~V}_{\mathrm{OUT}}} \cdot \mathrm{G}_{\mathrm{MER}} \cdot\left(\mathrm{R}_{\mathrm{C}}+\frac{1}{\mathrm{SC}_{\mathrm{C}}}\right) \cdot \mathrm{G}_{\mathrm{CS}} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{1+\mathrm{SC}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}} \tag{11}
\end{align*}
$$

Frequency characteristics of the closed loop gain is given by pole fp1 consists of output capacitor CO and output load resistance R_{L}, zero point fz consists of external capacitor C_{C} of the phase compensation and resistance R_{C}, and pole fp2 consists of output impedance $Z_{E R}$ of error amplifier and external capacitor of phase compensation C_{C} as shown in equation (9). $\mathrm{fp} 1, \mathrm{fz}, \mathrm{fp} 2$ are obtained with the following equations (12) to (14).

$$
\begin{align*}
& \mathrm{fp} 1=\frac{1}{2 \pi \cdot \mathrm{C}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}} \tag{12}\\
& \mathrm{fz}=\frac{1}{2 \pi \cdot \mathrm{C}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{C}}} \tag{13}\\
& \mathrm{fp} 2=\frac{1}{2 \pi \cdot \mathrm{Z}_{\mathrm{ER}} \cdot \mathrm{C}_{\mathrm{C}}} \tag{14}
\end{align*}
$$

LV5069JA

Calculation of external phase compensation constant

Generally, to stabilize switching regulator, the frequency where closed loop gain is 1 (zero-cross frequency fZC) should be $\frac{1}{10}$ of the switching frequency ($\operatorname{or} \frac{1}{5}$). Since the switching frequency of this IC is 330 kHz , the zero-cross frequency should be 33 kHz . Based on the above condition, we obtain the following formula (15).

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{~V}_{\mathrm{OUT}}} \cdot \mathrm{G}_{\mathrm{MER}} \cdot\left(\mathrm{R}_{\mathrm{C}}+\frac{1}{\mathrm{SC}_{\mathrm{C}}}\right) \cdot \mathrm{G}_{\mathrm{CS}} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{1+\mathrm{SC}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}}=1 \tag{15}
\end{equation*}
$$

As for zero-cross frequency, since the impedance element of phase compensation is $\mathrm{RC} \gg \frac{1}{\mathrm{SC}_{\mathrm{C}}}$, the following equation (16) is obtained.

$$
\begin{equation*}
\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{~V}_{\mathrm{OUT}}} \cdot \mathrm{G}_{\mathrm{MER}} \cdot \mathrm{R}_{\mathrm{C}} \cdot \mathrm{G}_{\mathrm{CS}} \cdot \frac{\mathrm{R}_{\mathrm{L}}}{1+2 \pi \cdot \mathrm{fZC}_{\mathrm{ZC}} \cdot \mathrm{C}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}}=1 \tag{16}
\end{equation*}
$$

Phase compensation external resistance can be obtained with the following equation (16), the variation of the equation (17). Since $2 \pi \cdot \mathrm{fZC} \cdot \mathrm{C}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}} \gg 1$ in the equation (17), we know that the external resistance is independent of load resistance.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{REF}}} \cdot \frac{1}{\mathrm{G}_{\mathrm{MER}}} \cdot \frac{1}{\mathrm{G}_{\mathrm{CS}}} \cdot \frac{1+2 \pi \cdot \mathrm{fZC} \cdot \mathrm{C}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}} \tag{17}
\end{equation*}
$$

When output is 5 V and load resistance is $5 \Omega\left(1 \mathrm{~A}\right.$ load), $\mathrm{R}_{\mathrm{SNS}}$ is $30 \mathrm{~m} \Omega$, the resistances of phase compensation are as follows.

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{CS}}=\frac{0.125}{\mathrm{R}_{\mathrm{SNS}}}=4.167 \mathrm{~A} / \mathrm{V}, \mathrm{G}_{\mathrm{MER}}=250 \mu \mathrm{~A} / \mathrm{V}, \mathrm{f} \mathrm{ZC}=33 \mathrm{kHz} \\
& \\
& \quad \mathrm{R}_{\mathrm{C}}=\frac{5}{1.26} \times \frac{1}{250 \times 10^{-6}} \times \frac{1}{4.167} \times \frac{1+2 \times 3.14 \times\left(33 \times 10^{3}\right) \times\left(30 \times 10^{-6}\right) \times 5}{5}=24.45 \ldots \times 10^{3} \\
& \\
& =24.45[\mathrm{k} \Omega]
\end{aligned}
$$

If frequency of zero point fz and pole fp 1 are in the same position, they cancel out each other. Therefore, only the pole frequency remains for frequency characteristics of the closed loop gain.
In other words, gain decreases at $-20 \mathrm{~dB} / \mathrm{dec}$ and phase only rotates by 90° and this allows characteristics where oscillation never occurs.

$$
\begin{aligned}
& \mathrm{fp} 1=\mathrm{fz} \\
& \frac{1}{2 \pi \cdot \mathrm{C}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}} \cdot \frac{1}{2 \pi \cdot \mathrm{C}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{C}}} \\
& \mathrm{C}_{\mathrm{C}}=\frac{\mathrm{R}_{\mathrm{L}} \cdot \mathrm{C}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{C}}} \cdot \frac{5 \times\left(30 \times 10^{-6}\right)}{24.45 \times 10^{3}}=6.13 \ldots \times 10^{-9} \\
& =6.13[\mathrm{nF}]
\end{aligned}
$$

The above shows external compensation constant obtained through ideal equations. In reality, we need to define phase constant through testing to verify constant IC operation at all temperature range, load range and input voltage range. In the evaluation board for delivery, phase compensation constants are defined based on the above constants. The zero-cross frequency required in the actual system board, in other word, transient response is adjusted by external compensation resistance. Also, if the influence of noise is significant, use of external phase compensation capacitor with higher value is recommended.

Caution in pattern design

Pattern design of the board affects the characteristics of DC-DC converter. This IC switches high current at a high speed. Therefore, if inductance element in a pattern wiring is high, it could be the cause of noise. Make sure that the pattern of the main circuit is wide and short.

(1) Pattern design of the input capacitor

Connect a capacitor near the IC for noise reduction between $V_{\text {IN }}$ and the GND. The change of current is at the largest in the pattern between an input capacitor and V_{IN} as well as between GND and an input capacitor among all the main circuits. Hence make sure that the pattern is as thick and short as possible.
(2) Pattern design of an inductor and the output capacitor

High electric current flows into the choke coil and the output capacitor. Therefore this pattern should also be as thick and short as possible.

(3) Pattern design with current channel into consideration

Make sure that when High side MOSFET is ON (red arrow) and OFF (orange arrow), the two current channels runs through the same channel and an area is minimized.
(4) Pattern design of the capacitor between $\mathrm{V}_{\text {IN }}$-PDR

Make sure that the pattern of the capacitor between $V_{\text {IN }}$ and PDR is as short as possible.
(5) Pattern design of the RSNS

RSNS pattern should also be as think and short as possible for noise reduction.
(6) Pattern design of the small signal GND

The GND of the small signal should be separated from the power GND.

(7) Pattern design of the FB-OUT line

Wire the line shown in red between FB and OUT to the output capacitor as near as possible. When the influence of noise is significant, use of feedback resistors R2 and R3 with lower value is recommended.

Fig: FB-OUT Line

Typical Performance Characteristics
Application curves at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Operation Waveforms (Circuit from Typical Application, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$)

Discontinious current mode

Continious current mode
$\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}$

Load Transient response

$500 \mu \mathrm{~s} /$ DIV
Over current protection
OUT - GND short

Output Voltage

Characterization curves at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}$ IN $=15 \mathrm{~V}$

Output on resistance

Oscillatory frequency

Soft start source current

HICCUP timer charge current

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

